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Abstract—Modern scientific technology such as particle accel-
erators, telescopes and supercomputers are producing extremely
large amounts of data. That scientific data needs to be processed
using systems with high computational capabilities such as
supercomputers. Given that the scientific data is increasing in size
at an exponential rate, storing and accessing the data is becoming
expensive in both, time and space. Most of this scientific data is
stored using floating point representation. Scientific applications
executed in supercomputers spend a large amount of CPU
cycles reading and writing floating point values, making data
compression techniques an interesting way to increase computing
efficiency. Given the accuracy requirements of scientific comput-
ing, we only focus on lossless data compression. In this paper
we propose a masking technique that partially decreases the
entropy of scientific datasets allowing for better compression ratio
and higher throughput. We evaluate several data partitioning
techniques for selective compression and compare these schemes
with several existing compression strategies. Our approach shows
up to 15% improvement in compression ratio while reducing
the time spent in compression, to only a half of the original
compression time in some cases.

I. INTRODUCTION

Nowadays, the amount of data produced worldwide in a
year is larger than the amount of data produced by human
kind during centuries. A large amount of it corresponds to
scientific data generated in scientific facilities, using advanced
technology with large amount of sensors. The scientific data
is then analyzed and processed, which also generates more
data. For instance, scientific applications running in large
supercomputers generate large amounts of data that need to be
stored on persistent storage for later post-processing. In some
cases that data corresponds to an application state that is saved
and used to restart if a failure occurs (i.e. checkpointing), it
can be used to analyze the behavior of the application (i.e.
profiling) or to visualize the physical phenomena modeled
by the application (i.e. visualization). Independently of the
purpose, saving it on reliable storage is becoming prohibitely
time consuming as the size of the data is increasing much
faster than the I/O system of supercomputers [1].

In order to decrease the time to write scientific data to the
Parallel File System (PFS), it is possible to reduce the size
of the data by using data compression. Data compression has
been widely used in a wide range of areas and it is becom-
ing critically important for modern scientific research as the
dataset sizes are increasing exponentially. Data compression
can come in two flavors, lossy data compression and lossless
data compression. Lossy compression is used in applications
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that tolerate data-loss without altering its performance (e.g. au-
dio compression). Scientific computing however, might suffer
of large inaccuracies or even failure to correctly conclude the
execution, given as less as one single bit alteration. Therefore,
lossless compression is usually the preferred choice while
compressing scientific data.

In addition to the overwhelming amount of data, another
challenge of dealing with scientific data is that most of it
uses the IEEE floating point data representation [2]. In High
Performance Computing (HPC), a high level of precision is
often required to guarantee scientifically meaningful results.
Thus, most of data used in HPC applications uses single (32
bits) or double precision (64 bits) floating point representation.
Each value is composed of three parts, the sign, the exponent
and the mantissa. While the sign and the exponent of floating
point values in a data set might show some regularity, the
largest part of the floating point values (i.e. the mantissa) is
highly irregular, making it hardly compressible.

While there is wide literature on data compression, the most
popular compression techniques are general purpose compres-
sors that have as first goal to perform decently in most cases
rather than focusing in particular types of datasets. Then, there
is a range of compressors that target some particular cases,
such as digital pictures, audio or text files. Unfortunately,
there has been only few (yet important) work on compressing
scientific data. In this work we aim to study the limits of
lossless data compression for floating point datasets. The
contributions of this work can be summarized as follows:

o We propose a masking technique that partially decreases
the entropy level of HPC datasets leading to datasets with
higher compressibility levels.

o We implemented a fast compression algorithm that fo-
cuses in floating point data using binary masks.

o We evaluated our masking technique with real scientific
datasets and demonstrate an improvement on compression
ratio up to 15% and up to 2x in compression throughput.

The rest of this paper is organized as follows: Section II
explain the motivations for this research, Section III presents
our masking technique introduced in this work. Section IV
shows our evaluation, Section V overviews the related work
and finally Section VI concludes this work.

II. MOTIVATIONS

The research work presented in this paper has as primary
goal to decrease the cost of storing, accessing and moving



large amounts of scientific data on future large scale computing
facilities where such data is usually processed and utilised.
Then, two main challenges arise: the size and the irregularity
of the data. In this section we present why these two charac-
teristics are so challenging while working with scientific data.

A. The Big Data Era

Modern science is generating large amounts of data that
needs to be analyzed and used for different purposes. For
instance, the Large Hadron Collider (LHC) in Switzerland
generates about 25 Petabytes of data every year. This data
is distributed among 170 computing facilities thanks to the
LHC worldwide Computing Grid infrastructure [3], [4]. Trans-
mitting over the network such large amounts of data from
one computing center to another can take a large amount of
time, limiting scientific collaboration. Therefore, compressing
scientific data is critical for the efficient use of such collabo-
rative networks. In addition to the already existing scientific
challenges, the future of scientific discoveries seems to be
closely related to the capacity to get, store, access and process
larges amount of data. For instance, there are plans to build
a telescope that is expected to generate more data than the
whole internet in one single day [5]. Storing scientific data
for projects of such magnitude will require millions of storage
devices making important any gain in space.

Large supercomputers process scientific data and perform
complex computation tasks on that data. Unfortunately the size
of scientific data is growing exponentially and the bandwidth
to access that data is only increasing linearly. One example of
this mismatch between the size of the data and the bandwidth
to write that data in a reliable storage is the case of HPC
applications checkpointing. Indeed, when applications write
their state into the PFS, they lose a large amount of CPU
cycles waiting to finish to write the checkpoint files. More
generally, the discrepancy between computing capabilities and
data movement cost is increasing so quickly that the HPC
community has arrived to the conclusion that in the future
flops will be free while data movements will be costly in both,
time and energy. This shows the importance of scientific data
compression for future large computing systems.

Precision || Sign | Exponent | Mantissa
Single 1 8 23
Double 1 11 52

TABLE I: Floating point representation

B. The Scientific Data

Most of the scientific data used in HPC is represented in
IEEE floating point representation, in either single or double
precision. Table I shows the bit distribution of floating point
values for both precisions (32 and 64 bits). One single HPC
application could have tens of different variables, each one
with a particular physical meaning. From the data compression
perspective this data diversity is already a first challenge.

Indeed, if the data is not written in an organized fashion (i.e.
all values with the same physical meaning together), it could
be very difficult for any compression algorithm to find patterns
that would be obvious in other circumstances.

Given that values of variables with the same meaning are
somehow similar (i.e. same orders of magnitude), grouping
them increases the local regularity of the data. Also, many
phenomena will show a gradual variation across the dataset.
While such gradual variation could be more or less drastic
depending on the given scenario, in many cases the average
variation between neighbor elements is relatively low, which
could have a significant impact on the regularity of the datasets
and therefore their compressibility.

Fig. 1: Floating Point Data: Each column is the binary rep-
resentation of a 64 bits floating point value. A black square
means 0 and a white square means 1

Unfortunately, even while scientific datasets are written
keeping structures in a good order, floating point data usually
involves a high level of entropy (i.e. high irregularity), in
particular in the less significant bits of the mantissa. Figure 1
shows the binary representation of the 64 bits floating point
data of a numerical simulation of the brain. Each value is
expressed in a column of 64 small squares, using white color
for a 1 and black for a 0. As we can see the first bits of
the values present a high regularity (upper part of the figure)
while the less significant bits of the mantissa show high
irregularity (lower part of the figure). While some datasets
seem hard to compress, restructuring or partitioning strategies
might increase the achievable compression ratio.

III. MASKING DATA

The first technique that we propose in this work is based
on the idea of altering the datasets to bring them as close as
possible to the point of Zero entropy. A Zero entropy dataset
can be described as a dataset where all the bits are equal (i.e.
either all 1 or all 0) [6]. Assuming we could find a bijection
that could transform a scientific dataset into a Zero entropy
dataset then we could compress the resulting dataset to an
negligible amount of information: the size of the dataset. One
could imagine that it is impossible to transform every possible
dataset into a Zero entropy dataset and then recover the original
data using a simple bijection. But it is possible if for every
dataset we use a different bijection. In other words, if it was



possible to automatically find for each dataset a bijection that
transforms the dataset into a Zero entropy dataset, we could
compress the resulting data and just store the compressed data
together with the bijection.

A. The silly case

Now that the idea of reducing the variability of the scientific
datasets has been introduced we can focus on the automatic
generation of such bijections. The main concept relies on
applying masks to the data so that each value is transformed
into a Zero entropy value (e.g. 1111...111), and store the masks
(i.e. the bijection) to be able to recover the original data.
Figure 2 shows an example in which a mask is applied to
a value using XOR encoding. If we assume that one mask
is applied to each value, then the number of masks will be
equal to the number of values. Given that the size of the
masks is the same size of each value, then we will end up
with a bijection that contains the same amount of information
as the original dataset: hence we call this case the silly case.
Although this case does not bring any advantage in terms of
data compression, the idea can still be exploited if we find a
way to reduce the amount of information in the bijection.

| S ‘ Exponent Mantissa
Value: |1‘10010001010101 10 1
Mask: |o‘0110111010101o...01
Masked: 1 1 1 1 1 1 1 1 1 1 1 1 11 .11 1

Fig. 2: Masking Floating Point Values

One option to reduce the size of the bijection is to reduce
the number of masks. Thus we could imagine a configuration
in which all the values of a dataset use the same mask. For this
purpose we could study the percentage of ones and zeros in
each column of the vector and apply a mask that will increase
the overall percentage of ones. For instance, if 100% of the
bits in the first column are ones and 100% of bits in the next
column are zeros, a mask starting by 01... would keep the first
column as it is and at the same time change all the values of the
second column, giving as result a dataset where 100% of both,
the first and the second column are ones. Now if we assume
that the first 16 columns (2 bytes) are completely regular then
by applying the same mask to all values we could get as result
a dataset where all the first 16 columns represent a partial
Zero entropy dataset. Unfortunately, performing statistics over
the entire dataset is unrealistic given the large size of modern
scientific data. Moreover, such technique will only increase
the similarities between bit columns but it will not change the
overall regularity of each column.

B. Exploiting neighbor proximity
In order to increase the regularity of a dataset while keeping
a low overhead due to masks storing, we propose to apply

one mask to a block of data. The idea being that most HPC
applications have datasets in which neighbor elements have
close values. For instance, if we apply the same mask to
a block of two floating point values, the mask overhead in
relation to the original dataset size will be 50%. Thus, the
same could be done with blocks of 10 values for a mask
overhead of 10%, etc. To generate a mask for a block of values
we first do a statistical study for each bit column and then
generate a signature value for the block in which each bit is
decided based on the most frequent value for the given bit
column. Then we generate a mask for the signature value in
the same way that we do it for one single value. The mask
for the next block might be different but the regularity of
the dataset increases by applying different masks to different
blocks of data. Blocks of small numbers of values imply a
larger number of masks (hence larger mask overhead) but it
also increases the regularity of the dataset. On the other hand,
applying the same mask to a large number of values decreases
the probability of successful irregularity reduction but it also
involves only a negligible overhead for storing the masks. This
trade-off between irregularity reduction and mask overhead
will be studied in more detail in Section IV.

C. Masked data compression

After the masks have been applied to the original data, the
masked data is compressed using any classic data compressor
such as zlib [7]. Our first approach is to compress the data after
it has been masked without using any partitioning technique.
This is the most simple case given that not extra work is
required after masking. It is important to notice that the
classic compression algorithms also process the data in blocks.
Thus, we decompose the large compression blocks into smaller
blocks that are then passed to the masking engine.

D. Byte-level column-wise compression

In a second approach we apply byte-level column-wise
serialization before the compression process. To this purpose,
we developed a module that partition the data in 4 or 8 datasets
(single or double precision accordingly), each one of them
corresponding to a byte column of the floating point data.
While the statistical analysis performed during the masking
process could give us hints on whether a particular byte-
column could avoid compression to increase throughput and
efficiency, we do perform the compression of all the columns
in order to analyze if the masking strategy can alleviate the
situation on the lower bits of the mantissa. This scenario
is similar to the ISOBAR-compress technique [8], with the
difference that in this work we study the impact of applying
masks to the data before compression. One of the important
aspects to study while partitioning the data in columns is to try
to understand the impact of the masking strategy for different
byte positions. Assuming that only some part of the floating
point values benefits from the masking technique, applying
full size masks is a waste of space. In such scenarios, applying
mask to only a subset of bytes could be sufficient to achieve
the same compression ratio.
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Fig. 3: Comparison between masked-data compression vs. other compression techniques. The first and third experiments use a
10MB particles dataset of the GTC application (Single precision). The second experiment is based on a human brain simulation’s
136MB dataset in double precision and a control vector from a weather simulation.

IV. EVALUATION

In our evaluation we first study the impact of our masking
technique on the regularity of the datasets and we compare it
to other compression schemes. Then, we study the impact of
the byte-level column-wise encoding strategy and we show the
efficiency gained with partial masking, in both compression
ratio and compression throughput and we show the stability
of our compression technique. We test our proposed techniques
with multiple datasets including the numerical simulation of
human brain during impact (velocity field), particle data for a
3D Gyrokinetic Toroidal Code that makes part of the NERSC
benchmarks [9], a control vector used for the assimilation of
weather data, data from several NASA Parallel Benchmarks
(NPB) [10], simulated plasma temperature and many others.
The datasets have between tens and hundreds MBs of floating
point data, in single or double precision.

A. Masking study

In this section we study the impact of our masking tech-
nique. We start by applying masks to blocks of 1000 float
values and then decrease the size of the blocks to 1 single
floating point value. We perform a bit-column analysis of the
dataset in which we measure the probability of a bit being
equal to 1 depending on its position. The same analysis is
performed on the original and masked data for multiple block
sizes. The results are presented in Figure 3a. As we observe,
the original dataset is very regular in a per-column basis, for
the first few bits. Then, the regularity of the data decreases
exponentially for the mantissa bits. Overall, we notice that the
masking technique does improve the regularity of the data.
It is interesting to see that the smaller the block size, the
higher the regularity of the data; up to some point where
the dataset is transformed into a Zero entropy dataset using
a masking block size of one single floating point value. This
silly case, is obviously not interesting for the compression
aspect of this research, but it does help us to assert that our
masking algorithm is working correctly.

Then, we compare our masked-data compression scheme
with other compression techniques for several applications.

We measure the size of the original data and the size of the
compressed data using three techniques. The first technique is
the Floating Point Compression (FPC) [11] library. The second
one is the Zlib general purpose compression library [7] and
the last one is using Zlib to the masked data. Figure 3b shows
the results of our compression evaluation. For clarity we have
normalized the results to the original size of each dataset. We
notice that the masked data Zlib compression is systematically
better than the plain Zlib compression, although the difference
between both depends on the dataset. We also notice that FPC
does not always performs better than Zlib, but in some cases it
performs better than Zlib with and without masking. We then
perform a more detailed analysis by measuring which bytes
are more impacted by the our masking technique and how that
is reflected on the final compression ratio.

B. Column-wise compression study

In order to study how our masking technique impacts the
different byte columns of the floating point data, we implement
an experiment in which the data is masked and reorganized in
columns of bytes before compression. For instance, a dataset
of single precision floating point values will be distributed
in four subsets of data, where the z!" subset holds the x'"
byte of each float. This redistribution is done after the original
data is masked. Then, we compress each subset of data and
store them together with the set of masks and all metadata
required. We measure how much space is necessary to store
each compressed subset and the set of masks. The results are
plot in Figure 3c. The first case at the left shows the space
required to store each byte-column on the original data before
masking and compression. Then, we can see the silly case of
one mask per float. The space required to store the masks is
equal to the original size of the data, as expected. Then, we
vary the block size from 2 floats up to 1000 floats. we observe
that the block size does impact the compression ratio for all
bytes, but at different levels. For instance, the first byte shows
an impressive compression ratio for any block size.
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Fig. 4: Compression decomposition, throughput and stability study. This experiments use data from the GTC application and
different variables (temperature and precipitation) from a numerical simulation of the Hurricane Isabela done with the Weather
Research and Forecasting (WRF) model. More variables were analyzed giving similar results.

C. Partial masking study

This evaluation shows that the masking techniques increases
the regularity of some byte columns. However, it is also clear
that the masks are not improving the regularity of the mantissa
bits. Storing masks for bytes that do not are getting any
benefit from it, is a waste of storage. Thus, we improved
our software, in such way that it only stores the masks of
those columns that are getting improvements. This allows us to
have an even finer block decomposition because the overhead
related to the masks is decreasing to half or a quarter of the
original overhead. In addition, we also avoid compressing high
entropy byte columns because they show a low compression
ratio and it requires an important amount of time. This idea
is similar to the ISOBAR [8] library but we extend that
work with our masking technique, to increase the number of
columns that present compressible patterns. By compressing
only a part of the data we increase the compression speed
and increase the compression ratio of the compressible part of
the data. We perform an experiment in which we measure the
amount of compressed data, non-compressed data and meta-
data (including masks) that our approach generates. Figure 4a
shows the results for three different HPC datasets, the last
two correspond to checkpoint data generated while performing
a simulation of the Hurricane Isabela using WRF [12]. As
we can see, masking and compressing only part of the data
shows important gains in compression ratio in comparison to
compressing the plain dataset. Our complete technique shows
up to 15% of improvement in the compression ratio.

We also measure the masking and compression speed and
compare it with a plain compression of the whole dataset.
Our results are presented in Figure 4b. As we can observe, the
masking and decomposition process takes a significant amount
of time, but this is tolerable because it greatly reduces the
following compressing time. In fact, in some cases, masking
and compressing takes half of the time that it takes to compress
the whole dataset. In all cases, the compression speed of our
approach is largely higher than compressing the plain data.
Thus, not only our approach present better compression ratio
but it also offers dramatical speedup. It is also important to

notice, that at this point not much effort was done to optimize
our masking scheme, but an statistical approach in which
only a subset of the values is analyzed could present similar
compression ratio for even higher masking/compression speed.

D. Compression ratio stability

Although we have performed a complete evaluation with
multiple different HPC datasets, one could argue that high
compression ratios are achieved because the initial conditions
of HPC applications present a high degree of homogeneity.
To show that this is not the case for our results, we perform
an experiment in which we compress the checkpoint data of
an execution that lasted over 20 hours. Checkpoints are taken
every hour. The execution corresponds to the simulation of
the Hurricane Isabela using WRF. In this test we compress
the temperature variable which corresponds to a 3D structure.
Here we focus only on the compressible data versus non-
compressible data. The values are stored in single precision
(32 bits) and the masks are 16 bits long (i.e. decomposition
by half). Figure 4c shows the results of this experiment. As
we can see, the compressed data is only a fraction of its
original size, the compression ratio is dramatically high for
the compressible bytes. Although, the compressed size does
increase slightly during the first hours of the execution, it
is clear that even after 20 hours of execution our approach
stabilises and still guarantees a very high compression ratio.

V. RELATED WORK

There is a large literature on data compression but only a
small percentage of it focuses on floating point compression
which is critical for big data science. Isenburg et al. [13]
propose a lossless compression technique for floating point
coordinates for 3D structures. The authors propose to predict
the following floating point value and then compress the
residual between the prediction and the actual value, achieving
impressive results for the compression of meshes and other ge-
ometric structures. It is important to notice that 3D structures
are likely to have more predictive patterns in comparison with
scientific data that might contain a substantial amount of noise.



Lindstrom et al. [11] propose a more general approach that
leverages the results of the above-mentioned method. While
the prediction of floating point data gives as result a value very
close to the actual value, the high precision of floating point
data limits the benefits of such prediction. Better results are
achieved in this work thanks to an improved entropy coder.
While this work achieves good results, in both compression
ratio and compression throughput, it does not study which part
of the floating point data is responsible for the results and if
it is really necessary to process the whole dataset.

One of the most relevant works is the ISOBAR-compress
library [8] that partitions the floating point data in compress-
ible and non-compressible data using statistical analysis. This
technique achieves state-of-the-art compression ratio and com-
pression throughput given that only a subsection of the whole
dataset is passed to the compressor engine. This technique
analysis the regularity (i.e. entropy) of each byte column and
decides whether is worth or not to try to compress the given
column. While this is close to part of the work presented in
this paper, an important difference is our masking strategy
that shows significant improvements in terms of compression
ratio. Also, we perform a more detailed study in which we
demonstrate the stability of the compression ratio.

Floating point decomposition has also been exploited for
visualization purposes [14]. The idea is to read floating point
data with a partial precision, so that the amount of data
read is much lower than the original data size. However, this
approach does not reduce the amount of data written to the
PES. Another relevant work is PRIMACY [15]. PRIMACY
is a preconditioner that enhances the regularity of floating
point scientific datasets before they are passed to regular
compressors. Their analysis of the datasets is similar to the
one used in this work. However, the usage of binary masks as
a way to increase the regularity of the data is not presented in
that work. We believe this work could complement our work
and biseversa, in the sense that by mixing both preconditioners
we could achieve even higher data regularity.

VI. CONCLUSION

In this research work we have proposed binary masks
as a way to increase the regularity of HPC datasets. Then,
once the masks have been applied, we can analyze which
parts of the dataset are worth compressing and are passed
to the compressor. This approach has shown up to 15% of
improvement in compression ratio, while the compression can
take only half of the time in some cases. This technique
reduces the time and space required to compress floating point
data. In the future, we plan to study some statistical approaches
that could optimize further our masking scheme. Also, we
would like to explore multi-process compression [16] as a way
to exploit similarities between processes.
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